Using the very latest in smart technology, the robotic arm is a brilliant tool that takes electrode placement to a whole new level. And while it doesn't actually perform surgery, it does assist the neurosurgeon before and during surgery to ensure that electrodes are placed with never-before-seen accuracy.
Before surgery
In any kind of brain surgery, accuracy is always important. To find where epileptic seizures are happening in the brain requires extensive planning and brain mapping to ensure that each electrode is precisely placed. Prior to the surgery, the medical team will take an MRI, and a CT scan. The scans are merged and loaded into the robot's own on-board laptop computer. The computer has a very large screen so the surgical team can plan each trajectory– from where to enter the skull to where to place the electrode lead in the brain.
During surgery
When it's time for surgery, the robot remembers each trajectory so when we go to place our first lead, we tell it which trajectory we want it to go to, and the robot moves into place.
Using its own laser scanner the robot scans areas of the patient's face and then lines it up with the MRI images that have been loaded onto the robot and matches it to the trajectory. It then triangulates itself and tells the doctor exactly where to place the lead.
To place the electrodes, the neurosurgeon drills a small hole about the size of a pencil lead. A special bolt is screwed into that hole. The hair-thin lead then goes through the bolt and the bolt is tightened down to the lead so it stays where it's supposed to.
How seizures are monitored
Once all the leads are placed, your child is moved to our epilepsy monitoring unit (EMU) and we monitor them by hooking up the leads to our EEG monitoring technology which will gather data on each seizure. Our neurologists process the data and then determine if there's something surgical that can be done to alleviate the seizures.